Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Adaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems
Two phenomena can produce chattering: switching of input control signal and the large amplitude of this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension bi...
متن کاملEntropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملDynamic moment invariants for nonlinear Hamiltonian systems
Distributions of particles being transported through a nonlinear Hamiltonian system are studied. Using normal form techniques, a procedure to obtain invariant functions of moments of the distribution is given. These functions are invariant for the given Hamiltonian system and are called dynamic moment invariants. These techniques are used to obtain dynamic moment invariants for the nonlinear pe...
متن کاملMultistage Modified Sinc Method for Solving Nonlinear Dynamical Systems
The sinc method is known as an ecient numerical method for solving ordinary or par-tial dierential equations but the system of dierential equations has not been solved by this method which is the focus of this paper. We have shown that the proposed version of sinc is able to solve sti system while Runge-kutta method can not able to solve. Moreover, Due to the great attention to mathematical mod...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2017
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2017.2654324